Range and mechanism of encoding of horizontal disparity in macaque V1.

نویسندگان

  • S J D Prince
  • B G Cumming
  • A J Parker
چکیده

The responses of single cortical neurons were measured as a function of the binocular disparity of dynamic random dot stereograms for a large sample of neurons (n = 787) from V1 of the awake macaque. From this sample, we selected 180 neurons whose tuning curves were strongly tuned for disparity, well sampled and well described by one-dimensional Gabor functions. The fitted parameters of the Gabor functions were used to resolve three outstanding issues in binocular stereopsis. First, we considered whether tuning curves can be meaningfully divided into discrete tuning types. Careful examination of the distributions of the Gabor parameters that determine tuning shape revealed no evidence for clustering. We conclude that a continuum of tuning types is present. Second, we investigated the mechanism of disparity encoding for V1 neurons. The shape of the disparity tuning function can be used to distinguish between position-encoding (in which disparity is encoded by an interocular shift in receptive field position) and phase-encoding (in which disparity is encoded by a difference in the receptive field profile in the 2 eyes). Both position and phase encoding were found to be common. This was confirmed by an independent assessment of disparity encoding based on the measurement of disparity sensitivity for sinusoidal luminance gratings of different spatial frequencies. The contributions of phase and position to disparity encoding were compared by estimating a population average of the rate of change in firing rate per degree of disparity. When this was calculated separately for the phase and position contributions, they were found to be closely similar. Third, we investigated the range of disparity tuning in V1 as a function of eccentricity in the parafoveal range. We find few cells which are selective for disparities greater than +/-1 degrees even at the largest eccentricity of approximately 5 degrees. The preferred disparity was correlated with the spatial scale of the tuning curve, and for most units lay within a +/-pi radians phase limit. Such a size-disparity correlation is potentially useful for the solution of the correspondence problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Range and Mechanism of Encoding of Horizontal Disparity

Prince, S.J.D., B. G. Cumming, and A. J. Parker. Range and mechanism of encoding of horizontal disparity in macaque V1. J Neurophysiol 87: 209–221, 2002; 10.1152/jn.00466.2000. The responses of single cortical neurons were measured as a function of the binocular disparity of dynamic random dot stereograms for a large sample of neurons (n 787) from V1 of the awake macaque. From this sample, we s...

متن کامل

Coding of horizontal disparity and velocity by MT neurons in the alert macaque.

We performed the first large-scale (n = 501), quantitative study of horizontal disparity tuning in the middle temporal (MT) visual area of alert, fixating macaque monkeys. Using random-dot stereograms, we quantified the direction tuning, speed tuning, horizontal disparity tuning, and size tuning of each neuron. The vast majority (93%) of MT neurons were significantly tuned for horizontal dispar...

متن کامل

Neurons in parafoveal areas V1 and V2 encode vertical and horizontal disparities.

Stereoscopic vision mainly relies on binocular horizontal disparity (HD), and its cortical encoding is well established in the foveal representation of the visual field. The role of vertical disparity (VD) is more controversial. Thus far, in the monkey, very few studies have investigated the HD sensitivity beyond 5 degrees of retinal eccentricity and no evidence of a real encoding of VD exists ...

متن کامل

Neural bases of stereopsis across visual field of the alert macaque monkey.

Left and right retinal images of an object seen by the 2 eyes can occupy slightly disparate horizontal and/or vertical locations. The role of horizontal disparity (HD) in stereoscopic vision is well established, but the functional contribution of vertical disparity (VD) remains unclear. Various psychophysical studies have shown that HD and VD are used differently by the visual system depending ...

متن کامل

Understanding the Cortical Specialization for Horizontal Disparity

Because the eyes are displaced horizontally, binocular vision is inherently anisotropic. Recent experimental work has uncovered evidence of this anisotropy in primary visual cortex (V1): neurons respond over a wider range of horizontal than vertical disparity, regardless of their orientation tuning. This probably reflects the horizontally elongated distribution of two-dimensional disparity expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 1  شماره 

صفحات  -

تاریخ انتشار 2002